Cramer-Rao Bounds for Nonparametric Surface Reconstruction from Range Data

نویسندگان

  • Tolga Tasdizen
  • Ross T. Whitaker
چکیده

The Cramer-Rao error bound provides a fundamental limit on the expected performance of a statistical estimator. The error bound depends on the general properties of the system, but not on the specific properties of the estimator or the solution. The Cramer-Rao error bound has been applied to scalarand vector-valued estimators and recently to parametric shape estimators. However, nonparametric, lowlevel surface representations are an important tool in 3D reconstruction, and are particularly useful for representing complex scenes with arbitrary shapes and topologies. This paper presents a generalization of the Cramer-Rao error bound to nonparametric shape estimators. Specifically, we derive the error bound for the full 3D reconstruction of scenes from multiple range images.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improved Cramer-Rao Inequality for Randomly Censored Data

As an application of the improved Cauchy-Schwartz inequality due to Walker (Statist. Probab. Lett. (2017) 122:86-90), we obtain an improved version of the Cramer-Rao inequality for randomly censored data derived by Abdushukurov and Kim (J. Soviet. Math. (1987) pp. 2171-2185). We derive a lower bound of Bhattacharya type for the mean square error of a parametric function based on randomly censor...

متن کامل

The Cramer-Rao Lower Bound in the Phase Retrieval Problem

This paper presents an analysis of Cramer-Rao lower bounds (CRLB) in the phase retrieval problem. Previous papers derived Fisher Information Matrices for the phaseless reconstruction setup. Two estimation setups are presented. In the first setup the global phase of the unknown signal is determined by a correlation condition with a fixed reference signal. In the second setup an oracle provides t...

متن کامل

Bayesian Cramer-Rao bounds for complex gain parameters estimation of slowly varying Rayleigh channel in OFDM systems

This paper deals with on-line Bayesian Cramer-Rao (BCRB) lower bound for complex gains dynamic estimation of time-varying multi-path Rayleigh channels. We propose three novel lower bounds for 4QAM OFDM systems in case of negligible channel variation within one symbol, and assuming both channel delay and Doppler frequency related information. We derive the true BCRB for data-aided (DA) context a...

متن کامل

Approximate estimation of the Cramer-Rao Lower Bound for Sinusoidal Parameters

-In this paper we present new approximation expressions for the Cramer-Rao Lower Bound on unbiased estimates of frequency, phase, amplitude and DC offset for uniformly sampled signal embedded in white-Gaussian noise. This derivation is based on well-known assumptions and a novel set of approximations for finite series of trigonometric functions. The estimated Cramer-Rao Lower Bounds are given i...

متن کامل

[hal-00325326, v1] On-line Bayesian Cramer-Rao Bounds for OFDM Slowly Varying Rayleigh Multi-path Channel Estimation

The on-line Bayesian Cramer-Rao (BCRB) lower bound for the dynamic estimation of a time-varying multi-path Rayleigh channel in 4-QAM OFDM system is considered. In case of negligible channel variation within one symbol and delay related information, true BCRB for data-aided (DA) context, and two closed-form expressions for non-data aided (NDA) context are derived.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003